Preliminary Communication

Carbene complexes of Fe^{II} prepared from a precursor complex containing a remote nucleophilic heteroatom

James G. Toerien, Mieke Desmet, Gert J. Kruger and Helgard G. Raubenheimer

Department of Chemistry, Rand Afrikaans University, Auckland Park 2006 (South Africa)

(Received February 16, 1994)

Abstract

The complex $[(\eta^5 - C_5 H_5)Fe(CO)_2Cl]$ reacts with isothiazol-5-vllithium to form $[(\eta^5 - C_5H_5)Fe(CO)_2(CCHCHNS)]$ (1). Treatment of 1 with CF₃SO₃H or CF₃SO₃Me gives the cationic organo(thio)carbene complexes $[(\eta^5 - C_5H_5)Fe(CO)_2(CCHCHN(R)S)][SO_3CF_3]$ (R = H(2); Me(3)). Determination of the crystal structure of complex 3 has revealed an Fe-carbene carbon bond length of 1.952(3) Å.

Key words: Iron; Carbene; Crystal structure; Thiazolinylidene

It has previously been shown that lithiated thiazoles readily react with suitable transition metal complexes to give thiazolyl complexes that, upon protonation or alkylation of the N-atom give stable amino(thio)carbene complexes [1-3]. In these thiazolinylidene complexes the N-atom is in an α -position with respect to the coordinated carbene carbon (Scheme 1), as is typical for known cyclic and acyclic aminocarbene complexes [4,5].

We have found that isothiazole, prepared as previously described [6] react analogously to give heterocarbene complexes. However, the carbene complexes derived from isothiazolyl complexes [7*] differ in two important respects from those derived from thiazolyl complexes (Scheme 1): (i) the nucleophilic N-atom is in

0022-328X/94/\$7.00 SSDI 0022-328X(94)24652-Y the β - rather than α -position with respect to the coordinated carbon atom [8*], and (ii) organo(thio)- instead of amino(thio)carbene complexes are obtained. Öfele and co-workers [9] have prepared similar carbene complexes by the interaction of 1,2-dimethyl-4-pyrazolium iodide with anionic Group 6 metal complexes, but their approach was different in that the β -nitrogen was already alkylated before the reaction with the metal species and furthermore the ligand contains a stabilizing alkylated N-atom in the α -position, which is the case in known heterocyclic-carbene compounds.

The reaction of $[(\eta - C_5H_5)Fe(CO)_2Cl]$ with one molar equivalent of isothiazole-5-yllithium [7*] in THF at -78°C gives the neutral complex $[(\eta^5-C_5H_5)Fe$ -(CO)₂(CCHCHNS)] (1) in 52% yield (Scheme 2). Complex 1 was obtained as a brown oil after purification by column chromatography (Florisil; diethyl ether-hexane; -10° C) and has been fully characterised spectroscopically (Table 1). The oil decomposes slowly and was not analyzed.

The isothiazolyl complex 1 readily reacts with one equivalent of CF₃SO₃H or CF₃SO₃Me in CH₂Cl₂ at 0°C to give the organo(thio)carbene complexes [$(\eta^{5}$ - C_5H_5)Fe(CO)₂(CCHCHN(R)S)[SO₃CF₃] (R = H (2) or Me (3)), which to our knowledge are the first examples of heterocarbene complexes formed from a precursor in which the nucleophilic heteroatom (N in this case) is not directly bonded to the coordinated carbon. After filtration through anhydrous $MgSO_4$ the solutions were concentrated, pentane was added, and the solutions were kept at -25° C to deposit dark brown, analytically pure (C, H, N S), crystals of the isothiazolinyl complexes 2 and 3 in 36 and 41% yields, respectively.

The ¹³C-{¹H} NMR data (Table 1) for compounds 2 and 3 show that the C^5 carbene carbon resonances appear at δ 189.1 and 189.9, respectively, and are shifted downfield with respect to the C⁵ resonance for compound 1. This downfield shift of the C⁵ resonances is similar to that found for the analogous thiazolinylidene complex $[(\eta^5 - C_5 H_5)Fe(CO)_2(CNHCMeCHS)]$ - $[SO_3CF_3]$ [3], and is indicative of carbene formation. Also indicative of carbene formation are the positions of the ν (CO) absorption bands of complexes 2 and 3 which appear at higher energies than those observed for complex 1 [3].

Correspondence to: Professor H.G. Raubenheimer.

Reference number with asterisk indicates a note in the list of references.

J.G. Toerien et al. / Carbene complexes of Fe^{II} from a precursor complex

Scheme 1. Formation of a carbone complex from (A) a thiazolyl complex and (B) an isothiazolyl complex. [M] = suitable transition metal complex; R^+ = H^+ or Me^+ .

Fig. 1. Molecular structure of the cation of $[(\eta^5-C_5H_5)Fe(CO)_2(CCHCHN(Me)S)][SO_3CF_3]$ (3) (schakal 88 [11]). Selected bond lengths (Å) and angles (°): Fe-C(1) 1.952(3), Fe-C(10) 1.778(4), Fe-C(11) 1.773(3), Fe-C_5H_5 (average) 2.089, C(1)-C(2) 1.388(4), C(2)-C(3) 1.400(5), C(3)-N(1) 1.311(5), N(1)-S(1) 1.674(3), S(1)-C(1) 1.680(3); Fe-C(1)-S(1) 120.5(2), Fe-C(1)-C(2) 131.4(2), S(1)-C(1)-C(2) 108.0(2).

C13

The X-ray crystal structure of $[(\eta^5-C_5H_5)Fe-(CO)_2(CCHCHN(Me)S)][SO_3CF_3]$ (3) (Fig. 1) unambiguously shows the N-atom (N(1)) to be in the β -position with respect to the carbene carbon (C(1)) [10*]. The Fe-C(1) bond length of 1.952(3) Å is similar to that of 1.947(3) Å observed in $[(\eta^5-C_5H_5)Fe(CO)_2-(CNHCMeCHS)][SO_3CF_3]$ [3].

We are currently investigating the preparation of carbene complexes in which the remote nucleophilic heteroatom (O, N or S) in the precursor complex, obtained after trans metallation, is (i) part of an acyclic ligand, (ii) located outside a coordinated ring system, and (iii) separated from the coordinated carbon by several bonds.

Scheme 2. Route to complexes 1-3.

TABLE 1	Spectroscopic and	physical data	for complexes 1-3
---------	-------------------	---------------	-------------------

Compound	M.p./°C *	NMR ^b		MS °		$\nu_{\rm CO}$ ^d /cm ⁻¹
		¹ H	¹³ C-{ ¹ H}	m/z	Fragment ion	
1	(oil)	8.61 (s, 1H, H ³),	214.4 (CO),	261	[CpFe(CO)2(CCHCHNS)]+	2036
		6.99 (s, 1H, H ⁴),	164.0 (C ⁵),	233	[CpFe(CO)(CCHCHNS)] ⁺	1986
		4.16 (s, 5H, C ₅ H ₅)	157.3 (C ³),	205	[CpFe(CCHCHNS)] ⁺	
			134.9 (C ⁴)	178	[CpFe(C ₂ HS)] ⁺	
			85.6 (C ₅ H ₅)	121	[CpFe] ⁺	
			0.0	56	[Fe] ⁺	
2	91-92	14.48 (br. s, 1H, NH),	211.5 (CO)	261	[CpFe(CO) ₂ (CCHCHNS)] ⁺	2046
		8.56 (d, 1H, J(H ³ -H ⁴)2.0, H ³),	189.1 (C ⁵),	233	[CpFe(CO)(CCHCHNS)] ⁺	2001
		7.41 (d, 1H, J(H⁴-H³)1.9, H⁴),	150.4 (C ³),	205	[CpFe(CCHCHNS)] ⁺	
		5.22 (s, 5H, C ₅ H ₅)	134.5 (C ⁴),	178	$[CpFe(C_2HS)]^+$	
			87.1 (C ₅ H ₅)	121	[CpFe] ⁺	
				56	[Fe] ⁺	
3	8586	8.56 (d, 1H, J(H ³ -H ⁴)2.6, H ³),	211.4 (CO),	276	[CpFe(CO) ₂ (CCHCHN(CH ₃)S)] ⁺	2046
		7.31 (d, 1H, $J(H^4-H^3)2.6, H^4)$,	189.9 (C ⁵),	261	[CpFe(CO) ₂ (CCHCHNS)] ⁺	2004
		5.25 (s, 5H, C ₅ H ₅),	153.6 (C ³),	233	[CpFe(CO)(CCHCHNS)] ⁺	
		4.17 (s, 3H, NCH ₃)	134.7 (C ⁴),	205	[CpFe(CCHCHNS)] ⁺	
		-	87.2 (C ₅ H ₅),	186	[Cp ₂ Fe] ⁺	
			40.5 (NCH ₃)	121	[CpFe] ⁺	
			-	56	[Fe] ⁺	

^a Recorded on a standardised Büchi 535 apparatus.

^b All spectra recorded on a Varian VXR 200 FT at 298 K; ¹H NMR at 200.6 MHz and ¹³C-{¹H} at 50.3 MHz; 1 in C₆D₆, 2 and 3 in CD₂Cl₂.

^c Mass spectra recorded on a Finnigan Mat 8200 instrument (70 eV); $Cp = C_5H_5^-$.

^d Solution spectra recorded in hexachlorobutadiene on a Perkin-Elmer 841 spectrophotometer.

References and notes

- 1 H.G. Raubenheimer, G.J. Kruger, A. van A. Lombard, L. Linford and J.C. Viljoen, *Organometallics*, 3 (1985) 275.
- 2 H.G. Raubenheimer, M. Roos and R. Otte, J. Chem. Soc., Chem. Commun., (1990) 1722.
- 3 H.G. Raubenheimer, F. Scott, S. Cronje, P.H. van Rooyen and K. Psotta, J. Chem. Soc., Dalton Trans., (1992) 1009.
- 4 H. Fischer, in *Transition Metal Carbene Complexes*, Verlag Chemie, Weinheim, 1983, pp. 2–68.
- 5 K.H. Dötz, in P.S. Braterman (ed.), Reactions of Coordinated Ligands, Vol. 1, Plenum Press, New York, 1986, pp. 285-370.
- 6 R. Raap, Can. J. Chem., 44 (1966) 1324.
- 7 Isothiazoles, unsubstituted in the 5-position, are readily lithiated in this position at -78°C by n-butyllithium; M.P.L. Caton, D.H. Jones, R. Slack and K.R.H. Wooldridge, J. Chem. Soc., (1964) 446.

- 8 The N-atom in the precursor 1 could also be considered to be in a y-position with respect to the coordinated carbon if one takes account the formal electron movement in the conjugated carbon chain upon reaction with an electrophile (Scheme 1).
- 9 K. Öfele, E. Roos and M. Herberhold, Z. Naturforsch., 31b (1976) 1070.
- 10 Crystal data for 3: $C_{12}H_{10}F_3NO_5S_2Fe$, M = 425.18, $P2_1/c$ (no. 14), a = 8.5188(6), b = 14.211(2), c = 13.345(12) Å, $\beta = 91.69(68)^\circ$, V = 1613.50 Å³, Z = 4, F(000) = 856, R = 0.053 for 3916 reflections with $F_0 > 4\sigma(F_0)$, R = 0.063 for all 4678 reflections (Enraf-Nonius CAD-4 diffractometer Mo K α). The structure was refined using the program SHELXL-93 by G.M. Sheldrick, University of Göttingen, Germany, 1993. All crystal data may be obtained from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.
- 11 E. Keller, SCHAKAL 88, Program for the Graphic Representation of Molecular and Crystallographic Models, Albert-Ludwigs University, Freiburg, Germany, 1988.